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Use of Adjoint Physics for
4D VAR with the NCEP Global
Spectral Model

Presentation for Ph.D. Dissertation
by
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nat Is variational analysis?
nat 1s 4D VAR? What good Is it?

S =

v~ Variational analysis: vary control parameters to
adjust system to optimal state.

Control system: NWP model
Control parameters: ICs, physical parameters
Optimal state: Minimal forecast errors (cost function).

# v 4D VAR: apply variational analysis to minimize a
¥ » defined cost function over space and time.

= ®  Application: Find an optimal estimate of ICs or
= ® parameters, which is internally consistent between
model dynamics and observations.
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o YVhat are minimization and adjoint?

35E.0

| v A minimization

algorithm seeks a

| stationary point:

| evaluate cost function
and its gradient

| ¥ An adjoint integration
efficiently evaluates
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1® Challenge: Discontinuous physics

91773

_ Cost function curve
(NCEP diabatic model)

D.85 0.90 0.85
Time filter coefficient

1.00

v~ Discontinuous physics
— discontinuous cost
function.

v" Past approach: smooth
discontinuities in
physics.

v~ Smoothing introduces

many additional local
minima.




: Goals of my research
= ® ./ Answer questions:

§® Can an adjoint correctly evaluate the cost function
gradient when model physics are discontinuous?

— Can a minimization algorithm designed for

=9

. ® differentiable functions work for a discontinuous cost

E function? Do we have a better solution?

® / Construct a variational analysis system with the

: : NCEP global spectral diabatic model
o Carry out experiments on data assimilation and

| @ Pparameter fitting by 4D VAR approach.
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1® Outline
e

i ® . Review of classical approach to variational analysis
B — Lagrange multiplier solves a constrained problem (Sasaki 1958)
— Optimal control theory (LeDimet & Talagrand 1986)

— Perturbation analysis (PA) approach to derive the gradient of the
cost function (J)

— Newton and quasi-Newton minimization algorithms.

— New insight (rather than using PA) between adjoint and gradient:
Adjoint of discon. physics does work for deriving the gradient of J.

— Limited Memory Quasi-Newton method (L-BFGS) usually works
for minimizing J on discon. physics but sometimes has problems.

— Bundle method for discontinuous functions is better but slow.
— Optimal ICs and parameters improve forecasts just for 3 days.

Y
=-® . Future work




® Optimal control problem

v Let x =column vector of all
model variables

Let B =column vector of model
parameters

et g—i( = F(x ,8) =NWP model

F(x,B) Is discontinuous when
parameterized physics are
Included

Let J(x) = specified error
measurement in a time window
Example: Forecast (solid), (cost function)

observation (dashed) . Problem: Find x at t=0 and B
that minimize J
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: Sasakli (1958): Lagrange multiplier

"

F(xy) =0 v Lagrange multiplier meth_od
constructs a new expression,
Lagrangian,
L =J(X)+A"F(X)
v" Seek the stationary point (x,4)

of the Lagrangian by solving
Euler-Lagrange equations

oL _g

0X

oL g

*T0o0 many equations o
e Poor convergence
 Too expensive computationally




2 @ ~ Cost function depends on control variable, a=(xg,), with
numerical model as bridge:

0J=<W(x—x°), ox>
. { =< W(x-x°), L do.>

3J=<L"W(x—x°), da>
) @ “ Since &J=<0|,J, 00> 0, ,J=L"W (X —X,), where
L™ = adjoint of matrix L

v With the gradient, a minimization algorithm (popularly

L-BFGS) can iterate to solve for optimal values of control
variables




| o Newton and quasi-Newton minimization
® algorithms

v Solve Newton zero roots as an
optimal step size (Newton method)

3=+ 1L, 009" ao)A @

Getigrad(J)ibyradjoint 0.J], DJ| +A (0 — %)
for descent direction 0,91, #A@-05) =0

Take optimal step v Iterativ_ely refine the ap_proximfittion
for the inverse of Hessian matrix

COHVEI‘genCe {0 (quasi- Newton method, L-BFGS)
Stational‘y pomt') =H , +correction
{“nﬂ
lim H

GetiJibyinonlinear model

_Hn+1 (|:‘Un+1 E‘U )
— A -1

n - oo
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v" Line search to determine optimal
stepsize 3K




o Oteps to develop adjoint

i ® . Code and test TLM: compare x(a+oa)-x(a) and L oa
' : v" Code and test adjoint: compare J(a+da)-J(a) and grad(J) da
° v~ TLM and adjoint tests by PA fail with discont. physics

sass | J of adiabatic model Ex: Asselin Filter:

o) A(t)= A(t-1)+

v | e[A(t-1)-2A(1)+A(t+1)]

S244.F -

1??.46._" | - | | | | | 9 GA 1 28
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® v Compute {X(a+ Soa) - x(a)} /L Sda

® ~ Compute {J(a+ B5a) — J(a)} / grad(J) B3a

| o TLM test and gradient test of adjoint
® based on perturbation analysis

TLM test

ADB-model DB-model

Gradient test of adjoint

logss
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| o Example of discontinuities in a simplified
# Arakawa-Schubert cumulus parameterization

v~ Conditional instability defines
updraft originating level; cloud
base at lifting condensation level,
cloud top where parcel @ equals
environment @, >

150 hPa is threshold for updraft
layer and cloud thickness

o, profile

Check diabatic model behavior
e updraft ori  X(a+oa) — x(a) for initial field on

/\ level
7 7 7 surface 1+ NOV 1995

=® A.S schematic diagram v Choo:i:e column \gh?‘;e :cnitial ”
for one Cloud type cumulus IS turned oft arter sma

change in g_profile
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-
) 9 Example of discontinuities in a simplified
o Arakawa-Schubert cumulus parameterization

:t Moist static energy

—

ooigb

evel Index
woImw R o

3
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Enlarged view

near surface
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v Example: column 212, latitude
circle 39, time step 3
v Updraft depth: 154 hPa when

level 2 is the updraft originating
level; 68 hPa for level 4

v~ Any small perturbation may
cause cumulus to be turned
on/off suddenly

v Model response jumps




8 ® J(0)=2W[f(T,q)-fo>]2, f = Arakawa-Sch. parameterization
B T=T;5 Ot 0(T, 57e% - T27:%) (28 levels x384 columns)

® by a =0.8+ 0.001xn and foos=f(T, 5%,  1475%) ON 11/01/95
=4
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v" The cost function, J, is piecewise differentiable due to
piecewise differentiable source term (physics).

v" For k thresholds and n time steps, max number of
differentiable segments of J is k-2"
ax_ f]_(x)1 X < XC 10.0_
ot~ { f,(X), X=X, '

f1(X) = 2x-2, f5(X) = x-4, or
X.=1,dt=0.1. J !

Cost function:
J=x°(t,)
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| & Character of cost function with
® discontinuous physics: Real model

{ ® A real numerical model is an extension of the single-
~®  variable model on grids and variables
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| & Can adjoint of discontinuous physics
® find cost function gradient? Theory:

{ ®  Gradient of J of a single-variable model w.r.t. IC is
-®  evaluated by chain rule of differentiation, and every
o Integration time step forms a sub-function:

e dJ_dldx  dxodxs _

(

dx dxo dxn)

d)‘i =adjoint integration of

| o dx, dx,dx.; dxidx

dxo dx X

d

aJ
dx,

@ ~ For multi-variable models, expanding the chain rule forms
the integration of an adjoint model:

OXo1 | | 0%, Oxqy

0%, 0%y,

0%, )\ 0% 0%y,

aXZ aXOn

(0J 0J 0% 4+ 0J 0X; +...4+.0J 0Xn

0J | | 53 9% . 9J OX 31 X,
0% |=| Ox, axol2 O, ax022 T OX O,

0J 0J 0% . 4J 0% . .. 8J 0%

0x, 0%,

0X,, 0%y,

0X,, 0%,




Can adjoint of discontinuous physics
find cost function gradient? Yes.
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Can quasi-Newton algorithm minimize a

piecewise differentiable J? Often yes.

v L-BFGS algorithm can usually find the stationary point of J
with the correct gradient evaluated from the adjoint.

v" The stationary point may not be the global minimum.
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| o Can quasi-Newton algorithm minimize a

® piecewise differentiable J? Often yes.

i ® . Rough curve = actual cost function

® . Smooth curve = integral of gradient. Similar minima.
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Successful minimization of J
starting from 4 different ICs

) g Tlestcase:

60 &

= ® O0X_ {2x—2,x<1

D @ Ot

X—4,x21 40

A0 F
20 |

=® Integrate forward

=® 4stepswithdt=0.1 = °
4- . -1.0

60 ©

= ® Cost function: O
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v~ Minimization trapped by discontinuity
v~ Algorithm works if jJump size reduced.

2.0 —

Al Iiteration number /

4.0

- minimization route

! minimum \
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[3 Smoothing the discontinuity

v Remove discontinuity in a simple model using smooth ftn.
0X _ { f1(%), Xx<X;
ot *f,(X), X=X,

v Smoothing introduces extra stationary points for J.

0.5

0.5{ 1+tanh[h(X)]}| ...
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B

B o Impact of smoothing: L-BFGS finds
=% minimum in only 263 of 300, 37 failures.

Same 4 ICs as in previous example:
Now trouble.

e

E.D:— a8
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' : Can we do better? Test piecewise-

o differentiable “bundle” algorithm

:® . Test: J = Ywf(qguess) - f(truth)]2}
® . Take f; = shallow convection operator
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E Discontinuities: conditional instability defines cloud
base (lifting condensation level) and cloud top (highest
Instability level); different diffusion coefficients for
different layers.

® . Tuth=T& q profiles for column 111 at 12N, 1 July 1995

v Initial guess = T & q profile for some other column at 12N
or 12S. Try each column.

® . lterate to minimize J (to 0) using L-BFGS or bundle method

v Bundle method uses a bundle of gradients (side-grad) to
construct a sub-gradient to force J to decrease.

v L-BFGS fails for 3 of 383 columns. Bundle method works
® for all. but computational cost almost double.




Tracing the route of minimization
with L-BFGS for temperature profile
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Tracing the route of minimization
with bundle method for temperature profile

1

Initial guess |

Vertical level
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Tracing the route of minimization
with L-BFGS for g profile

vettical level
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vertical level

vettical level
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- 'o Decreases of J & [1J for L-BFGS and
: bundle method

,andg,]

Inoemalzad by j

Loganthm of | and g-nerm
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: Performance of L-BFGS algorithm

=® with ICs for NCEP global spectral model

= ® ./ Both discontinuity and nonlinearity introduced by
parameterized physics affect decrease rate of J
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Change of RMSE with forecasting time

(out to 5 days)

;:Adiabatic

Divergence BMSE (10°%s )

Diabatic

Divergence

Virtual Temperature RMSE (K]

Virtual temp

Spacific Humidity PMEE 10 katkg)

3;E 4=

*
=
*
d
d
)
*
T
.
2
- 2
. @
-
. 2

= ED, T2 S4 96
Forecasting Time {hours)

Vorticity RMSE (1075

4.0

2.5

2.0

2.5
2.0

1.5

0.5

0.D

1.0

Spec humidity

3 43 e F2 oS4 96
Forecasting Time (hours)




; o \ertical distribution of RMSE reduction
at 24-h (solid line) & 48-h (dashed Ime)
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Summary: Can adjoint correctly evaluate

# grad(J) when physics are discontinuous?
19
=

v~ Cost function, J, of parameterized physics Is
piecewise differentiable. Max number of
differentiable pieces is k-2" for k thresholds and n-
step integration, so J becomes rough very fast with
more thresholds and time steps.

E . . L
v Perturbation analysis approach is invalid when a
perturbation crosses a discontinuity.

chain rule for differentiation of a complex model,
which correctly evaluates gradients (or one-sided
gradients) of a piecewise differentiable J.




Summary: Can Newton’s method

®* minimize discontinuous cost functions?
i ® . L-BFGS method (Newton variant) often works

®  well to minimize J, but stationary point may not be
global minimum, and even sometimes fails.

=9

¥ » v Bundle method better but twice as slow.

=® About 4D VAR:

. : v~ Optimal parameter values found by 4D VAR

reduce forecast errors only out to 3 days.

— Imperfect models: affect optimality of ICs and
parameters for forecasts beyond optimization interval.

— Uncertainty: intrinsic loss of predictability with
Increasing fcst leading time, particularly at small-scales.
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® Future Work: Classical 4D VAR

'

: v Evaluate new physical parameterizations by
f o checking cost function and its sensitivity.

5 @ v Test bundle method to minimize cost function for

2 ® entire model.
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My Future Work: Data assimilation for
ensemble forecasting (Anderson “99)

v~ Glven a set of observations, a Monte Carlo
Implementation of fully non-linear filter solves for
a probability distribution of ICs, instead of seeking
a single ‘best’ estimate of ICs.

promises to enhance significantly the quality of
ensemble forecasts over a range of spatial and
temporal scales.

v Many obstacles need to be surmounted for the
extension.
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